The activation of factor X by factor IXa (fIXa) in the presence of phosphatidylcholine-phosphatidylserine (PCPS) vesicles is markedly accelerated by thrombin-activated factor VIII (fVIIIa). The interaction between highly purified fVIIIa and fIXa in this complex was studied fluorometrically at 25 degrees C by using a derivative of D-phenylalanyl-prolyl-arginyl-fIXa which was modified at the active site with fluorescein-5-maleimide (Fl-M-FPR-fIXa). Titration of Fl-M-FPR-fIXa with fVIIIa at fixed PCPS resulted in a large, saturable increase in anisotropy (delta r = 0.09). The titration data were fit to a model assuming a reversible equilibrium between fVIIIa and fIXa, resulting in an apparent dissociation constant of 2 nM and a stoichiometry of 1 mol of fVIIIa/mol of Fl-M-FPR-fIXa. The initial velocity of factor X activation was measured under identical conditions except that active fIXa and factor X were included, which yielded binding parameters similar to those determined fluorometrically. Thus, the fluorescence method accurately reflects complex formation between fVIIIa and fIXa on the phospholipid surface, and the fVIIIa-fIXa interaction is not influenced by the presence of the substrate, factor X. Addition of fVIII to Fl-M-FPR-fIXa and PCPS produced a small, saturable increase in anisotropy (delta r = 0.03), followed by a larger increase (delta r = 0.07) upon addition of thrombin to activate fVIII. Thus, fVIII binds fIXa, but proteolytic modification of fVIII must occur before the complete fVIIIa-dependent structural change in the active site of fIXa, as reflected in the anisotropy change, occurs