The ideal cell-carrier material for cartilage regeneration should be one that closely mimics the natural environment in a living articular cartilage matrix. In the current study, we considered that alginate-based chitosan hybrid biomaterials could provide excellent supports for chondrocyte adhesion. To test this hypothesis, we investigated the adhesion behavior of rabbit chondrocytes onto an alginate polymer versus the adhesion of the chondrocytes onto some alginate-based chitosan hybrid polymer fibers in vitro. We demonstrated that the alginate-based chitosan hybrid polymer fibers showed much improved adhesion capacity with chondrocytes in comparison with alginate polymer fiber. Additionally, morphologic studies revealed maintenance of the characteristic round morphology of the chondrocyte and the dense fiber of the type II collagen produced by the chondrocytes in the hybrid polymer. On the basis of these results, we conclude that an alginate-based chitosan hybrid polymer fiber has considerable potential as a desirable biomaterial for cartilage tissue scaffolds.