Myeloid dendritic cells (MyDCs), prime stimulators of antigen-specific immunity, can serve as one of the major reservoirs for human immunodeficiency virus type-1 (HIV-1). Utilizing mature monocyte-derived MyDCs generated with granulocyte/macrophage colony-stimulating factor, interleukin-4, and tumour necrosis factor-alpha as an in vitro model, we here present the first proof of concept for liposomal compound delivery to these cells by specifically addressing CD209, i.e. DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), a MyDC-associated C-type lectin implicated in the transmission of HIV-1 to T helper cells. By employing a liposomally entrapped tracer, calcein, we demonstrate by flow cytometry and mathematics a superior targeting efficacy for DC-SIGN, as compared with select other MyDC markers (CD1a, CD4, CD45R0, and CD83). Fluorescence microscopy reveals time-dependent surface binding and intracellular uptake of DC-SIGN-specific liposomes by both immature and mature MyDCs. This pilot study implies that liposomal targeting to CD209 and related C-type lectins may afford therapeutic intracellular drug delivery to MyDCs and other reservoir and nonreservoir cells susceptible to infection with HIV-1.