This is the first time (2)H solid-state NMR spectroscopy and spin-labeled EPR spectroscopy have been utilized to probe the structural orientation and dynamics of a stearic acid incorporated into magnetically aligned phospholipid bilayers or bicelles. The data gleaned from the two different techniques provide a more complete description of the bilayer membrane system. Both methods provided similar qualitative information on the phospholipid bilayer, high order, and low motion for the hydrocarbon segment close to the carboxyl groups of the stearic acid and less order and more rapid motion at the end towards the terminal methyl groups. However, the segmental order parameters differed markedly due to the different orientations that the nitroxide and C-D bond axes transform with the various stearic acid acyl chain conformations, and because of the difference in dynamic sensitivity between NMR and EPR over the timescales examined. 5-, 7-, 12-, and 16-doxylstearic acids spin-labels were used in the EPR experiments and stearic acid-d(35) was used in the solid-state NMR experiments. The influence of the addition of cholesterol and the variation of temperature on the fatty acid hydrocarbon chain ordering in the DMPC/DHPC phospholipid bilayers was also studied. Cholesterol increased the degree of ordering of the hydrocarbon chains. Conversely, as the temperature of the magnetically aligned phospholipid bilayers increased, the order parameters decreased due to the higher random motion of the acyl chain of the stearic acid. The results indicate that magnetically aligned phospholipid bilayers are an excellent model membrane system and can be used for both NMR and EPR studies.