We have recently identified and cloned the human LRIG1 gene (formerly LIG1). LRIG1 is a predicted integral membrane protein with a domain organization reminiscent of the Drosophila epidermal growth factor (EGF)-receptor antagonist Kekkon-1. We have searched for additional members of the human LRIG family and identified LRIG2 (). The LRIG2 gene was localized to chromosome 1p13 and had an open reading frame of 1065 amino acids. The LRIG2 protein was predicted to have the same domain organization as LRIG1 with a signal peptide, an extracellular part containing15 leucine-rich repeats and three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tail. The LRIG2 amino acid sequence was 47% identical to human LRIG1 and mouse Lrig1 (also known as Lig-1). Northern blotting and RT-PCR revealed LRIG2 transcripts in all tissues analyzed. Quantitative real-time RT-PCR showed the most prominent RNA expression in skin, uterus, ovary, kidney, brain, small intestine, adrenal gland, and stomach. Immunoblotting of COS-7 cell lysates demonstrated that heterologously expressed human LRIG2 had an apparent molecular weight of 132 kDa under reducing gel-running conditions. N-glycosidase F treatment resulted in a reduction of the apparent molecular weight to 107 kDa, showing that LRIG2 was a glycoprotein carrying N-linked oligosaccharides. Cell surface biotinylation experiments and confocal fluorescence laser microscopy demonstrated expression of LRIG2 both at the cell surface and in the cytoplasm. LRIG2 was detected in tissue lysates from stomach, prostate, lung, and fetal brain by immunoblotting. In conclusion, LRIG2 was found to be a glycoprotein which was encoded by a gene on human chromosome 1p13 and its mRNA was present in all tissues analyzed.