Pasteurella multocida is the causative agent of fowl cholera in birds. In a previous study using signature-tagged mutagenesis, we identified a mutant, AL251, which was attenuated for virulence in mice and in the natural chicken host. Sequence analysis indicated that AL251 had an insertional inactivation of the gene waaQ(PM), encoding a putative heptosyl transferase, required for the addition of heptose to lipopolysaccharide (LPS) (M. Harper, J. D. Boyce, I. W. Wilkie, and B. Adler, Infect. Immun. 71:5440-5446, 2003). In the present study, using mass spectrometry and nuclear magnetic resonance, we have confirmed the identity of the enzyme encoded by waaQ(PM) as a heptosyl transferase III and demonstrated that the predominant LPS glycoforms isolated from this mutant are severely truncated. Complementation experiments demonstrated that providing a functional waaQ(PM) gene in trans can restore both the LPS to its full length and growth in mice to wild-type levels. Furthermore, we have shown that mutant AL251 is unable to cause fowl cholera in chickens and that the attenuation observed is not due to increased serum sensitivity.