Mechanisms of vasoactive intestinal peptide-mediated vasodilation in human skin

J Appl Physiol (1985). 2004 Oct;97(4):1291-8. doi: 10.1152/japplphysiol.00366.2004. Epub 2004 May 21.

Abstract

Vasoactive intestinal peptide (VIP) is known to induce histamine release in human skin and to include a nitric oxide (NO)-dependent dilation in several other vascular beds. However, the relative contribution of histamine and NO to VIP-mediated vasodilation in human skin is unknown. Forty-three subjects volunteered to participate in two studies designed to examine the mechanism of VIP-mediated vasodilation in human skin. Study 1 examined the contribution of NO in the skin blood flow response to eight doses of VIP ranging from 25 to 800 pmol. In addition, study 1 examined a specific role for NO in VIP-mediated dilation. Study 2 examined the relative contribution of NO and histamine to VIP-mediated dilation via H1 and H2 histamine receptors. Infusions were administered to skin sites via intradermal microdialysis. Red blood cell flux was measured by using laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC; LDF/mean arterial pressure) was calculated and normalized to maximal vasodilation. VIP-mediated vasodilation includes a NO-dependent component at doses above 100 pmol, where NO synthase inhibition significantly attenuates CVC (P < 0.05). Inhibition of H1 receptors attenuates the rise in CVC to exogenous VIP (P < 0.05); however, combined H1-receptor inhibition and NO synthase inhibition further reduced VIP-mediated vasodilation compared with either H1 inhibition or NO synthase inhibition alone (P < 0.05). In contrast to H1-receptor inhibition, H2-receptor inhibition did not affect vasodilation to exogenous VIP. Thus, in human skin, VIP-mediated vasodilation includes a NO-dependent component that could not be explained by H1- and H2-receptor activation.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Administration, Topical
  • Adult
  • Blood Flow Velocity / drug effects
  • Dose-Response Relationship, Drug
  • Female
  • Humans
  • Male
  • Microdialysis / methods
  • Nitric Oxide / metabolism*
  • Receptors, Histamine / metabolism*
  • Skin / blood supply*
  • Skin / drug effects*
  • Skin Physiological Phenomena / drug effects*
  • Vasoactive Intestinal Peptide / administration & dosage*
  • Vasodilation / drug effects*
  • Vasodilation / physiology*
  • Vasodilator Agents / administration & dosage

Substances

  • Receptors, Histamine
  • Vasodilator Agents
  • Nitric Oxide
  • Vasoactive Intestinal Peptide