Two chimpanzees, one naïve (Ch1601) and one recovered from hepatitis C virus (HCV) acute infection (Ch1587), were vaccinated with recombinant envelope glycoproteins (E1E2) and then challenged with 100 CID50 of HCV. Results of the challenge were compared to infection in a non-vaccinated control animal. Immunization generated high antibody titers to E1E2 including antibody specifically directed to the hypervariable region 1 (HVR1) in addition to strong and specific HVR1 T-cell proliferative responses. Upon challenge with HCV, viremia was delayed 3 weeks in both vaccinated animals compared to the non-immunized (control) animal. Ch1601 HCV RNA titers were maintained below 5 x 10(4) copies/ml, and alanine aminotransferase levels were only minimally elevated. An increase in intrahepatic cytokine mRNA levels coincided with a fall in HCV RNA to non-quantifiable levels. Despite this apparent control of virus replication the animal became persistently infected. Ch1587 had a significantly shorter and milder viremia, compared to the re-infection of the non-vaccinated control animal. This data indicates that a strategy inducing a T-cell immune response combined with antibody responses to E1E2 would make a viable candidate for an HCV vaccine.