Background: Previous studies have shown that high density lipoprotein (HDL)-deficient states are associated with reduced paraoxonase 1 (PON1) activity. However, HDL reduction caused by primary hypertriglyceridemia has not been fully explored. The aim of the present study was to evaluate whether PON1 and platelet-activating factor acetylhydrolase (PAF-AH), two antioxidant enzymes, were altered in patients with low HDL-cholesterol levels with or without primary hypertriglyceridemia in comparison with control normolipemic subjects.
Methods: We studied 24 patients with low HDL-cholesterol levels with (n=12) or without (n=12) primary hypertriglyceridemia in comparison with 12 control subjects who presented normal HDL-cholesterol and triglyceride levels. Paraoxon and phenylacetate were used as substrate for measuring PON1 activities and 1-hexadecyl-2-[3H]acetyl-glycero-3-phosphocholine for platelet-activating factor acetylhydrolase (PAF-AH) activity. Double substrate method was used to assign phenotypes. Lipid, lipoprotein, apolipoprotein, and lipoprotein particles were determined by standardized methods.
Results: Both PON1 activities were significantly reduced in patients with low HDL-cholesterol levels. This reduction could be selectively attributed to the hypertriglyceridemic subgroup. PAF-AH activity was not different between hypoalphalipoproteinemic patients and controls. PON1 activities correlated positively and significantly with HDL-cholesterol, HDL2-cholesterol, HDL3-cholesterol, HDL-phospholipids, apo A-I, apo A-II, and LpA-I:A-II. PAF-AH correlated positively and significantly with total and low density lipoprotein-cholesterol.
Conclusions: Data from this study would suggest that in hypoalphalipoproteinemic syndrome, particularly when associated with hypertriglyceridemia, there is impairment in enzymatic antioxidant activity exclusively related with HDL.