The present study investigated the impact of the Na(+) pump inhibitor ouabain (g-strophanthin) on Ca(2+) sensitivity and Ca(2+) release in human right auricular trabeculae (coronary bypass) and in skinned muscle fibres from left ventricular myocardium (cardiac transplantation, dilated cardiomyopathy). A time-dependent increase in force of contraction was observed in right auricular trabeculae in response to ouabain (100 nM) before the intracellular Ca(2+) transient (fura-2) increased (n=6). In triton X-skinned fibres (no sarcoplasmic reticulum) of human failing myocardium, ouabain (1-100 nM) concentration-dependently increased tension at a free extracellular Ca(2+) concentration of 1 microM and the Hill coefficient of the Ca(2+)-dependent tension development. Ouabain (1-100 nM) did not directly induce a Ca(2+) release out of the sarcoplasmic reticulum, nor did it alter the caffeine (10 mM) induced sarcoplasmic reticulum Ca(2+) release in saponin-skinned fibre preparations in which the sarcoplasmic reticulum had been Ca(2+)-loaded. In conclusion, ouabain increases myofibrillar Ca(2+) sensitivity possibly due to an increase in the cooperativity of the thick and thin myofilaments. This mechanism may additionally contribute to the positive inotropic effect of ouabain.