Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration

J Physiol. 2004 Jul 15;558(Pt 2):549-60. doi: 10.1113/jphysiol.2004.066217. Epub 2004 Jun 4.

Abstract

Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Male
  • Muscle Contraction / physiology*
  • Muscle Fibers, Fast-Twitch / physiology*
  • Muscle Fibers, Slow-Twitch / physiology*
  • Muscle, Skeletal / cytology
  • Muscle, Skeletal / injuries
  • Muscle, Skeletal / physiology*
  • Myosin Heavy Chains / metabolism
  • Rats
  • Rats, Inbred F344
  • Regeneration / physiology*
  • Time Factors

Substances

  • Myosin Heavy Chains