We have previously demonstrated that angiotensin II (Ang II) stimulates nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs) by increasing NO synthase (NOS) expression via the type 2 receptor. The purpose of this study was to identify the Ang II-dependent signaling pathway that mediates this increase in endothelial NOS (eNOS). The Ang II-dependent increase in eNOS expression is prevented when BPAECs are pretreated with the tyrosine kinase inhibitors, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine, which also blocked Ang II-dependent mitogen-activated protein kinase (MAPK) kinase/extracellular-regulated protein kinase (MEK)-1 and MAPK phosphorylation, suggesting that Src is upstream of MAPK in this pathway. Transfection of BPAECs with an Src dominant negative mutant cDNA prevented the Ang II-dependent Src activation and increase in eNOS protein expression. PD98059, a MEK-1 inhibitor, prevented the Ang II-dependent phosphorylation of extracellular-regulated protein kinases 1 and 2 and increase in eNOS expression. Neither AG1478, an epidermal growth factor receptor kinase inhibitor, nor AG1295, a platelet derived growth factor receptor kinase inhibitor, had any effect on Ang II-stimulated Src activity, MAPK activation, or eNOS expression. Pertussis toxin prevented the Ang II-dependent increase in Src activity, MAPK activation, and eNOS expression. These data suggest that Ang II stimulates Src tyrosine kinase via a pertussis toxin-sensitive pathway, which in turn activates the MAPK pathway, resulting in increased eNOS protein expression in BPAECs.