Although the VEGF-Flk-1-pathway has been known as the major driving force of angiogenesis, new evidence has shown that VEGFR-1/Flt-1 plays important roles during the neovascularization under pathological conditions including tumor, atherosclerosis and arthritis. In search of Flt-1 receptor antagonizing peptides, we screened a phage display 12-mer-peptide library with recombinant Flt-1 protein. Seven candidate peptides were identified that specifically bound to VEGF receptor Flt-1, of which peptide F56 (WHSDMEWWYLLG) almost abolished VEGF binding to receptor Flt-1 in vitro. In vivo, F56 fused with DHFR (DHFR-F56) inhibited angiogenesis in a CAM assay. Moreover, DHFR-F56 significantly inhibited the growth of nodules of human gastric cancer cell line MGC-803 in BALB/c nude mice. Histological analyses showed that necrosis of the implanted tumor was markedly enhanced following treatment with DHFR-F56. In the severe combined immunodeficiency disease (SCID) mouse model for studying metastasis of the human breast cancer cell line BICR-H1, synthetic peptide F56 significantly inhibited tumor growth and lung metastases. Taken together, our results have demonstrated that peptide F56, as a Flt-1 receptor antagonist, fulfilled the antiangiogenic and antimetastatic effects by specifically interfering with the interaction between VEGF and receptor Flt-1. Thus, short peptide F56 may have clinical potential in tumor therapy.
Copyright 2004 Wiley-Liss, Inc.