Selenium has been shown to prevent cancer in animal models, and recent data indicate it is likely to be effective in humans as well. One selenium-containing protein, the cytoplasmic form of glutathione peroxidase (GPx-1), has been implicated in cancer risk and development by genetic studies identifying at-risk alleles and loss of heterozygosity in tumors. In order to evaluate the biological consequences of GPx-1 overexpression, human MCF-7 cells were stably transfected with a GPx-1 expression construct and the effects of GPx-1 on protein kinases associated with stress responses were determined. GPx-1 overexpression affected phosphorylation of p70S6K, whereas Erk1/2 and p38 MAPK were not affected. Site-specific phosphorylation of Akt declined and the levels of Gadd45, a DNA damage response protein, increased significantly as a consequence of elevated GPx-1 expression. Effects on p70S6K and Gadd45 after selenium supplementation have been reported, and given previous data demonstrating a role for GPx-1 in cancer etiology, these results support the concept that the chemopreventive properties of selenium may be due, at least in part, to its role in regulating GPx-1.