Comparison of data from functional mapping carried out on scorpion and sea anemones toxins blocking currents through voltage-gated potassium channels revealed that, despite their different 3D structures, the binding cores of these toxins displayed some similarities. Further molecular modeling studies suggested that these similarities reflect the use by these toxins of a common binding mode to exert their blocking function. Therefore, scorpion and sea anemone toxins offer an example of mechanistic convergent evolution.
Copyright 2004 Elsevier Ltd.