Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation

J Neurophysiol. 2004 Nov;92(5):2853-8. doi: 10.1152/jn.00485.2004. Epub 2004 Jun 22.

Abstract

Accumulation of amyloid beta-peptides (Abeta) in the brain has been linked with memory loss in Alzheimer's disease and its animal models. However, the synaptic mechanism by which Abeta causes memory deficits remains unclear. We previously showed that acute application of Abeta inhibited long-term potentiation (LTP) in the hippocampal perforant path via activation of calcineurin, a Ca2+ -dependent protein phosphatase. This study examined whether Abeta could also inhibit Ca2+/calmodulin dependent protein kinase II (CaMKII), further disrupting the dynamic balance between protein kinase and phosphatase during synaptic plasticity. Immunoblot analysis was conducted to measure autophosphorylation of CaMKII at Thr286 and phosphorylation of the GluR1 subunit of AMPA receptors in single rat hippocampal slices. A high-frequency tetanus applied to the perforant path significantly increased CaMKII autophosphorylation and subsequent phosphorylation of GluR1 at Ser831, a CaMKII-dependent site, in the dentate area. Acute application of Abeta1-42 inhibited dentate LTP and associated phosphorylation processes, but was without effect on phosphorylation of GluR1 at Ser845, a protein kinase A-dependent site. These results suggest that activity-dependent CaMKII autophosphorylation and AMPA receptor phosphorylation are essential for dentate LTP. Disruption of such mechanisms could directly contribute to Abeta-induced deficits in hippocampal synaptic plasticity and memory.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amyloid beta-Peptides / pharmacology*
  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Hippocampus / drug effects
  • Hippocampus / physiology*
  • In Vitro Techniques
  • Long-Term Potentiation / drug effects
  • Long-Term Potentiation / physiology*
  • Male
  • Models, Neurological
  • Peptide Fragments / pharmacology
  • Phosphorylation
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, AMPA / metabolism*

Substances

  • Amyloid beta-Peptides
  • Peptide Fragments
  • Receptors, AMPA
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases