Excessive exposure of the fetus to maternally derived corticosteroids has been linked to the development of adult-onset diseases. To determine if early gestation corticosteroid exposure alters subsequent coronary artery reactivity, we administered dexamethasone (0.28 mg.kg(-1).day(-1)) to pregnant ewes at 27-28 days gestation (term being 145 days). Vascular responsiveness was assessed in endothelium-intact coronary and mesenteric arteries isolated from steroid-exposed and age-matched control fetal sheep at 123-126 days gestation and lambs at 4 mo of age. Lambs exposed to maternal dexamethasone had higher mean arterial blood pressures than the age-matched controls (93 +/- 3 vs. 83 +/- 5 mmHg, P < 0.05). Mesenteric arteries from the steroid-exposed fetuses displayed diminished responses to ANG II, relative to controls. In 4-mo-old lambs, prenatal dexamethasone exposure significantly increased coronary artery vasoconstriction to ANG II, ACh, and U-46619, but not KCl. In contrast, postnatal mesenteric artery reactivity was unaltered by steroid exposure. Compared with fetal mesenteric reactivity, postnatal mesenteric reactivity to ANG II, phenylephrine, and U-46619 was diminished, whereas the response to 120 mmol/l KCl was heightened. Coronary artery ANG II receptor protein expression was not significantly altered by steroid exposure in either age group. These findings demonstrate that early-gestation glucocorticoid exposure programs postnatal elevations in blood pressure and selectively enhances coronary artery responsiveness to second messenger-dependent vasoconstrictors. Glucocorticoid-induced alterations in coronary vascular smooth muscle structure or function may provide a mechanistic link between an adverse intrauterine environment and later cardiovascular disease.