The human AF4 (ALL-1 fused gene on chromosome 4) gene (4q11) is recurrently involved in reciprocal translocations to the MLL (mixed lineage leukemia) gene (11q23), correlated with high-risk acute lymphoblastic leukemia (ALL) in infants and early childhood. The t(4;11) translocation is one of the most frequent MLL translocations known today. In general, MLL translocations are the result of an illegitimate recombination process leading to reciprocal fusions of unrelated translocation partner (TP) genes with the MLL gene. Owing to the constant presence of the derivative (11) product, it was hypothesised that only MLL.TP fusion genes are responsible for the leukemogenic process. This concept has been successfully tested for some known MLL fusions, while other MLL fusions failed. Here, we demonstrate growth-transforming potential of AF4 wild-type and the AF4.MLL fusion protein. The underlying oncogenic mechanism involves the two E3 ubiquitin ligases SIAH1 and SIAH2, the N-terminal portion of AF4 and the protection of the AF4.MLL fusion protein against proteosomal degradation.