Primary ciliary dyskinesia (PCD) is a phenotypically and genetically heterogeneous condition in which three genetic mutations have already been identified. The primary defect is in the ultrastructure or function of cilia, highly complex organelles that are structurally related to the flagella of sperm and protozoa. The clinical features of PCD include recurrent sinopulmonary infections, subfertility and laterality defects; the latter due to ciliary dysfunction at the embryological node. Completion of the human genome sequence has accelerated the identification and characterisation of disease genes, and the current molecular strategy in PCD includes candidate gene analysis, positional cloning, model organism analysis and proteomic analysis. The identification of these genes will provide new insights into the molecular mechanisms involved in the assembly and function of cilia and the pathway that determines left-right axis in man. This may also allow the development of new methods for diagnosis, prevention and treatment of PCD.