Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model

Wound Repair Regen. 2004 May-Jun;12(3):337-45. doi: 10.1111/j.1067-1927.2004.012309.x.

Abstract

Articular cartilage has only a limited ability to regenerate. The transplantation of autologous chondrocytes is currently used to treat focal defects in human articular cartilage, although use of organs, tissues, or cells from different species is being investigated as an alternative treatment. The object of this study was to use xeno-transplantation of cultured pig chondrocytes for the repair of rabbit chondral defects, and to analyze the significance of tissue rejection in this animal model. Partial chondral defects, including removal of cartilage tissue and a part of the subchondral bone, were created in the lateral femoral condyles of 30 adult New Zealand White rabbits. A periosteal flap was sutured to the native cartilage with the cambium layer facing the defect. As a control, culture medium was injected into the defect void of one group of rabbits while in a treatment group, chondrocytes, isolated from normal femoral pig cartilage, were injected into the defect void. All rabbits were killed by 24 weeks. Macroscopic changes of the cartilage were analyzed using Mankin's score. The distal femoral portion was studied histologically using hematoxylin and eosin, alcian blue, toluidine blue, and Mason's trichrome. Pig cells and pig genetic material were detected in the neo-synthesized tissue by immunohistochemical detection of SLA-II-DQ and polymerase chain reaction analysis of the gene SLA-II-DQB. The synovial membrane was studied histologically by hematoxylin and eosin staining. In the control group, on average, less than 25 percent of the chondral defect was filled. The repair tissue had an irregular surface with few cells similar to chondrocytes or fibroblasts and a minimal formation of extracellular matrix. In the treatment group, the chondral defect was approximately 90 percent filled with good integration between the neo-synthesized cartilage and the native cartilage. The repair tissue had a smooth surface with cells similar to chondrocytes and a hyaline-like extracellular matrix. The neo-synthesized cartilage was morphologically similar to hyaline cartilage. Importantly, there were no signs of graft-vs.-host rejections or infiltration by immune cells. In the neo-synthesized tissue, pig genetic material was detected in 27 +/- 5 percent of all cells. These cells containing pig genetic material were distributed throughout the neo-synthesized cartilage. We conclude that the xeno-transplantation of chondrocytes could be an alternative method for the repair of articular cartilage defects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cartilage, Articular / cytology
  • Cartilage, Articular / injuries
  • Cartilage, Articular / physiology
  • Cartilage, Articular / transplantation*
  • Cells, Cultured
  • Graft Rejection / physiopathology
  • Models, Animal
  • Rabbits
  • Regeneration / physiology
  • Swine
  • Transplantation, Heterologous / methods*