If detected early, breast cancer is eminently curable. To detect breast cancer in samples with little cellularity, a high level of sensitivity is needed. Tumor-specific promoter hypermethylation has provided such a valuable tool for detection of cancer cells in biological samples. To accurately assess promoter hypermethylation for many genes simultaneously in small samples, we developed a novel method, quantitative multiplex-methylation-specific PCR (QM-MSP). QM-MSP is highly sensitive (1 in 10(4)-10(5) copies of DNA) and linear over 5 orders of magnitude. For RASSF1A, TWIST, Cyclin D2, and HIN1, we observed significant differences in both the degree (P < 0.003) and incidence (P < 0.02) of hypermethylation between normal and malignant breast tissues. Evaluation of the cumulative hypermethylation of the four genes within each sample revealed a high level of sensitivity (84%) and specificity (89%) of detection of methylation. We demonstrate the application of this technique for detecting hypermethylated RASSF1A, TWIST, Cyclin D2, HIN1, and RARB in 50-1000 epithelial cells collected from breast ducts during endoscopy or by lavage. Such an approach could be used in a variety of small samples derived from different tissues, with these or different biomarkers to enhance detection of malignancy.