The reaction of decamethylsilicocene, (Me5C5)2Si, with the proton-transfer reagent Me5C5H2+B(C6F5)4- produces the salt (Me5C5)Si+ B(C6F5)4(2), which can be isolated as a colorless solid that is stable in the absence of air and moisture. The crystal structure reveals the presence of a cationic pi complex with an eta5-pentamethylcyclopentadienyl ligand bound to a bare silicon center. The 29Si nuclear magnetic resonance at very high field (delta = - 400.2 parts per million) is typical of a pi complex of divalent silicon. The (eta5-Me5C5)Si+ cation in 2 can be regarded as the "resting state" of a silyliumylidene-type (eta1-Me5C5)Si+ cation. The availability of 2 opens new synthetic avenues in organosilicon chemistry. For example, 2 reacted with lithium bis(trimethylsilyl)amide to give the disilene E-[(eta1-Me5C5)[N(SiMe3)2]Si]2(3).