The gene cspH, which encodes one of the cold-shock proteins in Salmonella enterica serovar Typhimurium, has previously been reported to be induced during early exponential phase at 37 degrees C. In the present study, the expression of cspH upon nutrient up-shift at 37 degrees C was investigated and found to be affected by DNA gyrase and DNA-binding protein Fis. When cells at stationary phase were subcultured into a rich medium, the mRNA level of cspH increased dramatically prior to the first cell division. However, when the cells were treated with DNA gyrase inhibitors, cspH mRNA was not induced upon nutrient up-shift. The low level of DNA superhelical density at the cspH promoter in part affected the expression of cspH mRNA in vitro. In addition, a fis-deficient strain had a lower level of cspH mRNA than the wild-type upon nutrient up-shift. Finally, a cspH-lacZ construct, in which the putative binding region for Fis was deleted in the cspH promoter, expressed a low level of LacZ, in contrast to the native cspH-lacZ construct.