Synthesis and reactivity of tris(imido)rhenium complexes containing rhenium-main group element bonds. silicon-carbon bond activations of PhSiH(3) by silyl complexes

Inorg Chem. 2004 Jul 12;43(14):4353-62. doi: 10.1021/ic030282e.

Abstract

The synthesis and reactivity of a series of complexes of the (DippN=)(3)Re (Dipp = 2,6-(i)Pr(2)C(6)H(3)) fragment are reported. The anionic, Re(V) complex (THF)(2)Li(micro,micro-NDipp)(2)Re(=NDipp) (1), prepared by the reaction of (DippN=)(3)ReCl with (THF)(3)LiSi(SiMe(3))(3) or (t)BuLi (2 equiv) in the presence of THF (4 equiv), served as an important starting material for the synthesis of rhenium-element-bonded complexes. For example, treatment of 1 with ClSiR(3) gave the corresponding silyl complexes (DippN=)(3)ReSiR(3) (SiR(3) = SiMe(3) (2a), SiHPh(2) (2b), SiH(2)Ph (2c)). Complexes 2a-c are thought to exist in equilibrium between the Re(VII) (DippN=)(3)ReSiR(3) and Re(V) (DippN=)(2)ReN(SiR(3))Dipp isomers. Complexes 2a,b reacted with PhSiH(3) to give reaction mixtures that included 2c, Ph(2)SiH(2), SiH(4), and C(6)H(6). The silane and organic products arise from Si-C bond formation and cleavage. Treatment of 2a with CO gave (DippN=)(2)Re[N(SiMe(3))Dipp](CO) (3), which appears to result from trapping of the reactive Re(V) isomer of 2a by CO. Complex 1 reacted with the main group halides MeI, Ph(3)GeCl, Me(3)SnCl, Ph(2)PCl, and PhSeCl to give the corresponding rhenium complexes (DippN=)(3)ReER(n) (ER(n)() = Me (4), GePh(3) (5), SnMe(3) (6), PPh(2) (7), SePh (8)) in high yields. X-ray diffraction data for 5 indicate that the germyl ligand is bonded to rhenium, but positional disorder of the phenyl and Dipp groups prevented refinement of accurate metric parameters.