Pneumolysin (PLY) is a major virulence factor released by Streptococcus pneumoniae and has been implicated in the pathogenesis of pneumococcal pneumonia. In this study, we evaluated the contribution of newly recruited neutrophils and monocytes and resident alveolar macrophages to the pathogenesis of PLY-induced lung injury. Mice received either adhesion-blocking Abs to inhibit alveolar leukocyte trafficking or liposomal clodronate to deplete alveolar macrophages before intratracheal application of native PLY or its noncytotoxic derivative PdB. We found that treatment with PLY but not PdB resulted in increased lung vascular permeability. In addition, PLY also induced a decrease in the resident alveolar macrophage population, and the recruitment of peripheral blood neutrophils and monocytes into the alveolar space. Blockade of PLY-induced alveolar leukocyte trafficking by pretreatment of mice with anti-CD18 plus anti-CD49d Abs or depletion of circulating neutrophils did not attenuate the increase in lung permeability observed in response to intratracheal PLY. In addition, depletion of resident alveolar macrophages with clodronated liposomes did not reduce alveolar injury developing in response to PLY. PLY-induced lung injury was associated with only a small increase in bronchoalveolar lavage concentrations of cytokines. These data indicate that PLY-induced lung injury results from direct pneumotoxic effects on the alveolar-capillary barrier and is independent of both resident and recruited phagocytic cells.