Matrix metalloproteinases (MMPs) may contribute to the pathophysiology of cerebral ischemia by degrading matrix components in the neurovascular unit. In this study, the authors document a pathway by which MMPs interfere with cell-matrix interactions and trigger caspase-mediated cytotoxicity in brain endothelial cells. Hypoxia-reoxygenation induced endothelial cytotoxicity. Cytoprotection with zDEVD-fmk confirmed that cell death was partly caspase mediated. The temporal profile of caspase-3 activation was matched by elevations in MMP-2 and MMP-9. MMP inhibitors significantly decreased caspase-3 activation and reduced endothelial cell death. Degradation of matrix fibronectin confirmed the presence of extracellular proteolysis. Increasing integrin-linked kinase signaling with the beta1 integrin-activating antibody (8A2) ameliorated endothelial cytotoxicity. The results suggest that MMP-9 and MMP-2 contribute to caspase-mediated brain endothelial cell death after hypoxia-reoxygenation by disrupting cell-matrix interactions and homeostatic integrin signaling.