Polyglutamine expansion (polyQ) in the protein huntingtin is pathogenic and responsible for the neuronal toxicity associated with Huntington's disease (HD). Although wild-type huntingtin possesses antiapoptotic properties, the relationship between the neuroprotective functions of huntingtin and pathogenesis of HD remains unclear. Here, we show that huntingtin specifically enhances vesicular transport of brain-derived neurotrophic factor (BDNF) along microtubules. Huntingtin-mediated transport involves huntingtin-associated protein-1 (HAP1) and the p150(Glued) subunit of dynactin, an essential component of molecular motors. BDNF transport is attenuated both in the disease context and by reducing the levels of wild-type huntingtin. The alteration of the huntingtin/HAP1/p150(Glued) complex correlates with reduced association of motor proteins with microtubules. Finally, we find that the polyQ-huntingtin-induced transport deficit results in the loss of neurotrophic support and neuronal toxicity. Our findings indicate that a key role of huntingtin is to promote BDNF transport and suggest that loss of this function might contribute to pathogenesis.