Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Autoreactive T cells specific for myelin antigens are considered to play a prominent role in the initiation of the local inflammatory response, ultimately leading to myelin damage. Several studies indicate that autoreactive T cells are not completely deleted in the thymus, but are part of the normal T cell repertoire. Accidentally activated autoreactive T cells, however, may not automatically lead to autoimmune disease. Several reports support the existence of peripheral regulatory networks that prevent the activation and expansion of pathogenic T cells. Anti-idiotypic and anti-ergotypic T cells are part of this regulatory network and are thought to control autoreactive T cells by recognition of certain clonotypic and ergotypic determinants. These clonotypic networks may not function properly in patients with MS. Immunization with attenuated autoreactive T cells, termed T cell vaccination (TCV), may enhance or restore the regulatory networks to specifically suppress the autoreactive T cells as shown in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model for MS. In the past decade, TCV has been tested for MS in several clinical trails. This review summarizes these clinical trails and updates our current knowledge on the mode of action of T cell vaccination.