A new piperazine derivative, SJ-8002, is a synthetic anti-cancer agent which exhibits microtubule-inhibiting activities. In this study, we investigated the possibility that this compound inhibits angiogenesis and induces tumor-cell apoptosis using bovine aortic endothelial cells (BAECs) and human hepatocellular carcinoma cells (HepG2) as a model system, respectively. In vivo, SJ-8002 decreased the neovascularization of chick embryos and the basic fibroblast growth factor (bFGF)-induced angiogenesis in the chorioallantoic membrane (CAM) and the mouse Matrigel implants, respectively. In vitro, SJ-8002 treatment resulted in the inhibition of proliferation, migration, invasion and tube formation, and of matrix metalloproteinase-2 (MMP-2) expression in BAECs. In addition, the SJ-8002 treatment in HepG2 cells reduced cell viability, and caused the production of fragmented DNA and the morphological changes corresponding to apoptosis including condensed and fragmented DNA in a concentration-dependent manner. SJ-8002 also elicited the release of cytochrome c and the activation of caspase-3. Therefore, it is possible that SJ-8002 functions as both angiogenesis inhibitor and apoptosis inducer. Taken together, these results suggest that SJ-8002 may be a candidate for strong anti-cancer agent with the ability to inhibit the angiogenesis of endothelial cells and to induce the apoptosis of tumor cells.