The genetic background of the antimicrobial resistance of 10 selected multiresistant Salmonella serotype Typhimurium (S. Typhimurium) strains (including the emerging monophasic variant [4,5,12:i:- ]) was investigated. All strains shared class 1 integrons (with seven types of variable regions) and belonged to different lineages (L1-L6) according to their phage types, DNA polymorphisms by XbaI-pulsed-field gel electrophoresis (PFGE), integrons, and/or resistance patterns. The strains were screened for the presence and localization (chromosomal or plasmid) of 32 DNA sequences representing integron-, Tn21-like transposon-, resistance-, and virulence-plasmid genes. Strains belonging to lineage L1 (definitive phage type DT104) carried the 90-kb Salmonella virulence plasmid together with the complete or partial chromosomally located Salmonella Genomic Island 1 (SGI1). All strains belonging to the other five lineages carried their resistance determinants on various resistance plasmids. Two of these strains showed complex plasmid profiles, which included a 95 kb virulence plasmid together with two or four resistance plasmids. Two strains carried a resistance plasmid that lacked the virulence-plasmid-encoding sequences. The remaining two strains carried two different hybrid virulence-resistance plasmids. Twenty-three of the DNA sequences could be assigned to distinct XbaI genomic restriction patterns (PFGE profiles). In this way, the influence of the resistance and virulence plasmids on the PFGE profiles was determined, and several groups of resistance genes could be identified. The data obtained represent a useful epidemiological tool for tracing the emergence and distribution of multiresistant S. Typhimurium worldwide.