The depletion of CD4+ T-lymphocytes central to the immunodeficiency in acquired immunodeficiency syndrome (AIDS) is largely mediated by apoptosis of both infected and uninfected cells, but the mechanisms involved and the viral proteins responsible are still poorly characterized. It has recently been suggested that, in human and simian immunodeficiency virus (HIV) and SIV, Vpr is a major modulator of apoptosis in infected cells. Recently, we have reported on a chimera of caprine arthritis-encephalitis virus (CAEV) carrying vpr/vpx genes from SIVmac239, which is replication competent in goat macrophages but not in lymphocytes or human cells. Despite infection being restricted to macrophages, inoculation of primary goat peripheral blood mononuclear cells (PBMCs) with this chimera induced apoptosis in the lymphocyte population. In addition, when infected goat synovial membrane (GSM) cells were co-cultured with human CD4+ T lymphocyte SupT1 cell line, these CD4+ T cells showed increased apoptosis. The parental CAEV induced no significant apoptosis in goat PBMC cultures or in co-cultures with human SupT1 lymphocytes. This indicates that SIV Vpr/Vpx proteins indeed mediate apoptosis of T-lymphocytes and, moreover, do so without the need for active infection of these cells. Moreover, this apoptosis was observed when SupT1s were cocultured in direct contact, but not in absence of contact with CAEV-pBSCAvpxvpr-infected GSM cells. In view of these data, we propose that SIV Vpx/Vpr activate cell-to-cell contact-dependent extracellular signaling pathways to promote apoptotic death of uninfected bystander T-lymphocytes. Understanding this mechanism might bring insight for intervening in the loss of CD4+ T lymphocytes in the SIV infection model and in human AIDS.