The first vacuum-ultraviolet spectrum of a polysilylene (chain-type polysilane) with aromatic substituents is presented. Assignments of the absorption bands of the model compound poly(methylphenylsilylene) are based on previous experimental data and theoretical electronic band structure calculations for poly(alkylsilylenes) and on ultraviolet spectra of phenyl-containing monomers and polymers. Although aryl orbitals mix with the sigma-conjugated orbitals located along the catenated silicon backbone, some transitions are largely localized on the phenyl groups. These assignments elucidate the nature of the bonding in polysilylenes and should be useful in understanding photodegradation mechanisms and in the design of related new optical materials.