No method of predicting the radiation sensitivity of individual human tumors is presently available, and recently published data show that other factors, in addition to the intrinsic radiosensitivity of the tumor cells, may play a role in the in vivo response of human tumors. Since these factors likely involve the tumor milieu (e.g., cell-cell contact and tumor hypoxia), an in situ assay of radiosensitivity is required. Although an analysis based on chromosome damage is the only suitable assay that would fit the requirements of sensitivity and speed of analysis, conventional examination of chromosome damage is impractical. By allowing the visualization of chromosomes in interphase cells, the technique of premature chromosome condensation (PCC) overcomes the need to culture the tumor cells in vitro, but the technical problem remains of counting a small excess number of breaks over the often large pretreatment chromosome number. We demonstrate here that the combination of fluorescence in situ hybridization (FISH) with PCC enormously simplifies the problem by focusing the analysis on a single chromosome. It also allows exchange aberrations to be scored easily. We demonstrate that the FISH technology may also be used to estimate radiation sensitivity from stable reciprocal translocations in metaphase identified by combining whole chromosome painting with a second color hybridization to the repeat sequences common to the centromeres. Since the frequency of stable translocations should correlate with initial chromosome damage, and since these translocations are not preferentially lost from the irradiated tumor cell population by cell death, an estimate of tumor cell killing following 1-5 dose fractions should be possible. Each of these two methods has its advantages, and a careful study of the two should establish which is superior for routine use to determine tumor radiosensitivity in situ.