To clarify the mechanisms of osteoblastic cell death, we examined whether serum deprivation would cause activation of the apoptotic signal cascade and arrest of the cell cycle in mouse osteoblastic MC3T3-E1 cells. Serum withdrawal from osteoblastic cell cultures resulted in growth arrest and cell-cycle arrest at G0/G1, which actions were accompanied by transient and potent activation of NF-kappaB, caspase-8, caspase-2, caspase-3, and caspase-9 in this order. Apoptosis, but not necrosis, in serum-deprived cells could be detected by FACS using Annexin-V/propidium iodine double staining. Serum deprivation also resulted in transient activation of the 20S proteasome, which is an important component for regulation of the cell cycle by the ubiquitin-proteasome system. The 20S proteasome inhibitor (PSI) but not NF-kappaB inhibitor SN50 suppressed the activation of proteasomes in serum-deprived cells. Although caspase inhibitors could not prevent the G0/G1 arrest in the serum-deprived cells, SN50 and the 20S proteasome inhibitor could block it. Since SN50, 20S proteasome inhibitor and caspase inhibitor could rescue cells from serum deprivation-induced apoptosis, the pathway for NF-kappaB/caspase activation is independent of the NF-kappaB/cell-cycle pathway, and the events downstream of the NF-kappaB/caspase-9 cascade lead to apoptosis. Taken together, our present results identify a novel role for NF-kappaB in cell-cycle and apoptosis regulation and underscore the significance of each independent signal cascade in serum-deprived osteoblastic cells.