Interferons are cytokines that play a complex role in the resistance of mammalian hosts to pathogens. IFNgamma (interferon-gamma) is secreted by activated T-cells and natural killer cells. IFNgamma is involved in a wide range of physiological processes, including antiviral activity, immune response, cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes. IFNgamma activity is modulated by the binding of its C-terminal domain to HS (heparan sulphate), a glycosaminoglycan found in the extracellular matrix and at the cell surface. In the present study, we analysed the interaction of isolated heparin-derived oligosaccharides with the C-terminal peptide of IFNgamma by NMR, in aqueous solution. We observed marked changes in the chemical shifts of both peptide and oligosaccharide compared with the free state. Our results provide evidence of a binding through electrostatic interactions between the charged side chains of the protein and the sulphate groups of heparin that does not induce specific conformation of the C-terminal part of IFNgamma. Our data also indicate that an oligosaccharide size of at least eight residues displays the most efficient binding.