Intragenic complementation is a unique property of oligomeric enzymes with which to study subunit-subunit interactions. Complementation occurs when different subunits, each possessing distinct mutations that render the individual homomutant proteins inactive, interact to form a heteromutant protein with partial recovery of activity. In this paper, complementation events between human argininosuccinate lyase (ASL) and its homolog, duck delta2 crystallin, were characterized. Different active site mutants in delta2 crystallin complement by the regeneration of native-like active sites as reported previously for ASL. The complementarity of the ASL and delta2 crystallin subunit interfaces was illustrated by the in vivo formation of active hybrid tetramers from inactive ASL and inactive delta2 crystallin mutants. Subunits of both ASL and delta2 crystallin do not dissociate and reassociate in vitro at room temperature, even after 6 days of incubation, indicating that the multimerization interface is very strong. However, disruption of a salt bridge network in the tetrameric interface of delta2 crystallin caused a drastic acceleration of subunit dissociation. Double mutants combining these interface mutants with active site mutants of delta2 crystallin were able to dissociate and reassociate to form active tetramers in vitro within hours. These results suggest that exchange of subunits may occur without unfolding of the monomer. Intragenic complementation in these interface mutants occurs by reintroducing the native salt bridge interaction upon hetero-oligomerization. Our studies demonstrate the value of intragenic complementation as a tool for investigating subunit-subunit interactions in oligomeric proteins.
Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.