The auditory steady state response (aSSR) is an oscillatory electrical potential recorded from the scalp induced by amplitude-modulated (AM) or click/tone burst stimuli. Its clinical utility has been limited by uncertainty regarding the specific areas of the brain involved in its generation. To identify the generators of the aSSR, 15O-water PET imaging was used to locate the regions of the brain activated by a steady 1 kHz pure tone, the same tone amplitude modulated (AM) at 40 Hz and the specific regions of the brain responsive to the AM component of the stimulus relative to the continuous tone. The continuous tone produced four clusters of activation. The boundaries of these activated clusters extended to include regions in left primary auditory cortex, right non-primary auditory cortex, left thalamus, and left cingulate. The AM tone produced three clusters of activation. The boundaries of these activated clusters extended to include primary auditory cortex bilaterally, left medial geniculate and right middle frontal gyrus. Two regions were specifically responsive to the AM component of the stimulus. These activated clusters extended to include the right anterior cingulate near frontal cortex and right auditory cortex. We conclude that cortical sites, including areas outside primary auditory cortex, are involved in generating the aSSR. There was an unexpected difference between morning and afternoon session scans that may reflect a pre- versus post-prandial state. These results support the hypothesis that a distributed resonating circuit mediates the generation of the aSSR.