CYP3A induction aggravates endotoxemic liver injury via reactive oxygen species in male rats

Free Radic Biol Med. 2004 Sep 1;37(5):703-12. doi: 10.1016/j.freeradbiomed.2004.05.022.

Abstract

We carried out this experiment to evaluate the relationship between isoforms of cytochrome P450 (P450) and liver injury in lipopolysaccharide (LPS)-induced endotoxemic rats. Male rats were intraperitoneally administered phenobarbital (PB), a P450 inducer, for 3 days, and 1 day later, they were intravenously given LPS. PB significantly increased P450 levels (200% of control levels) and the activities (300-400% of control) of the specific isoforms (CYP), CYP3A2 and CYP2B1, in male rats. Plasma AST and ALT increased slightly more in PB-treated rats than in PB-nontreated (control) rats with LPS treatment. Furthermore, either troleandomycin or ketoconazole, specific CYP3A inhibitors, significantly inhibited LPS-induced liver injury in control and PB-treated male rats. To evaluate the oxidative stress in LPS-treated rats, in situ superoxide radical detection using dihydroethidium (DHE), hydroxy-2-nonenal (HNE)-modified proteins in liver microsomes and 8-hydroxydeoxyguanosine (8-OHdG) in liver nuclei were measured in control and PB-treated rats. DHE signal intensity, levels of HNE-modified proteins, and 8-OHdG increased significantly in PB-treated rats. LPS further increased DHE intensity, HNE-modified proteins, and 8-OHdG levels in normal and PB-treated groups. CYP3A inhibitors also inhibited the increases in these items. Our results indicate that the induction or preservation of CYP isoforms further promotes LPS-induced liver injury through mechanisms related to oxidative stress. In particular, CYP3A2 of P450 isoforms made an important contribution to this LPS-induced liver injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases / biosynthesis*
  • Cytochrome P-450 CYP3A
  • Endotoxemia / pathology*
  • Enzyme Induction
  • Lipopolysaccharides / toxicity*
  • Liver / drug effects
  • Liver / injuries*
  • Liver / pathology
  • Male
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / pathology
  • Oxidoreductases, N-Demethylating / biosynthesis*
  • Phenobarbital / pharmacology
  • Rats
  • Rats, Wistar
  • Reactive Oxygen Species / metabolism*

Substances

  • Lipopolysaccharides
  • Reactive Oxygen Species
  • Aryl Hydrocarbon Hydroxylases
  • Cytochrome P-450 CYP3A
  • Oxidoreductases, N-Demethylating
  • Phenobarbital