Proteomics research programs typically comprise the identification of protein content of any given cell, their isoforms, splice variants, post-translational modifications, interacting partners and higher-order complexes under different conditions. These studies present significant analytical challenges owing to the high proteome complexity and the low abundance of the corresponding proteins, which often requires highly sensitive and resolving techniques. Mass spectrometry plays an important role in proteomics and has become an indispensable tool for molecular and cellular biology. However, the analysis of mass spectrometry data can be a daunting task in view of the complexity of the information to decipher, the accuracy and dynamic range of quantitative analysis, the availability of appropriate bioinformatics software and the overwhelming size of data files. The past ten years have witnessed significant technological advances in mass spectrometry-based proteomics and synergy with bioinformatics is vital to fulfill the expectations of biological discovery programs. We present here the technological capabilities of mass spectrometry and bioinformatics for mining the cellular proteome in the context of discovery programs aimed at trace-level protein identification and expression from microgram amounts of protein extracts from human tissues.