Chemotherapeutic drugs and stress signals activate p73, the structural and functional homologue of p53, both by transcriptional activation and post-translational modifications. However, cisplatin, a DNA damage-inducing chemotherapeutic agent, is thought to regulate p73 only by affecting its stability through mechanisms involving the MLH-1/c-Abl signaling cascade. Here we show that c-Jun, a component of the AP-1 family of transcription factors, contributes to p73 induction by cisplatin. c-jun(-/-) cells are defective in p73 induction, and ectopic c-Jun expression augments p73 levels. c-Jun-mediated accumulation of p73 requires the transactivation activity of c-Jun and occurs in a c-Abl- and Mdm2-independent manner. c-Jun expression increases p73 half-life by preventing it from proteasome-mediated degradation, resulting in the potentiation of p73-mediated transcriptional activity. Moreover, mouse fibroblasts lacking c-Jun are resistant to cisplatin-induced apoptosis, and reintroduction of c-Jun restores p73 activation and sensitivity to cisplatin. Furthermore, p73-mediated apoptosis is abrogated in c-jun(-/-) cells. Together, these findings demonstrate a possible role for c-Jun in regulating p73 function and highlight the importance of the cooperativity between transcription factors in potentiating apoptosis.