Low-molecular-weight S-nitrosothiols are found in many tissues and affect a diverse array of signaling pathways via decomposition to *NO or exchange of their -NO function with thiol-containing proteins (transnitrosation). We used spectral laser scanning confocal imaging to visualize the effects of D- and L-stereoisomers of S-nitrosocysteine ethyl ester (SNCEE) on fluorescence resonance energy transfer (FRET)-based reporters that are targets for the following NO-related modifications: (a) S-nitrosation, via the cysteine-rich protein metallothionein (FRET-MT), and (b) nitrosyl-heme-Fe, via guanosine 3',5'-cyclic monophosphate (cygnet-2). Conformational changes consistent with S-nitrosation of FRET-MT were specific to l-SNCEE. In addition, they were reversed by dithiothreitol (DTT) but unaffected by exogenous oxyhemoglobin. In contrast, d- and l-SNCEE had comparable effects on cygnet-2, likely via activation of soluble guanylyl cyclase (sGC) by *NO as they were sensitive to the sGC inhibitor 1H-[1,2,4]-oxadiazolo[4,3-alpha] quinoxalin-1-one and exogenous oxyhemoglobin. These data demonstrate the utility of spectral laser scanning confocal imaging in revealing subtle aspects of NO signal transduction in live cells. Stereoselective transnitrosation of MT emphasizes the specificity of posttranslational modification as a component of NO signaling.