While much information is available on the structural connectivity of the cerebral cortex, especially in the primate, the main organizational principles of the connection patterns linking brain areas, columns and individual cells have remained elusive. We attempt to characterize a wide variety of cortical connectivity data sets using a specific set of graph theory methods. We measure global aspects of cortical graphs including the abundance of small structural motifs such as cycles, the degree of local clustering of connections and the average path length. We examine large-scale cortical connection matrices obtained from neuroanatomical data bases, as well as probabilistic connection matrices at the level of small cortical neuronal populations linked by intra-areal and inter-areal connections. All cortical connection matrices examined in this study exhibit "small-world" attributes, characterized by the presence of abundant clustering of connections combined with short average distances between neuronal elements. We discuss the significance of these universal organizational features of cortex in light of functional brain anatomy. Supplementary materials are at www.indiana.edu/~cortex/lab.htm.