Invasion of stromal host cells, such as myofibroblasts, into the epithelial cancer compartment may precede epithelial cancer invasion into the stroma. We investigated how colon cancer-derived myofibroblasts invade extracellular matrices in vitro in the presence of colon cancer cells. Myofibroblast spheroids invade collagen type I in a stellate pattern to form a dendritic network of extensions upon co-culture with HCT-8/E11 colon cancer cells. Single myofibroblasts also invade Matrigel trade mark when stimulated by HCT-8/E11 colon cancer cells. The confrontation of cancer cells with extracellular matrices and myofibroblasts, showed that cancer-cell-derived transforming growth factor-beta (TGF-beta) is required and sufficient for invasion of myofibroblasts. In myofibroblasts, N-cadherin expressed at the tips of filopodia is upregulated by TGF-beta. Functional N-cadherin activity is implicated in TGF-beta stimulated invasion as evidenced by the neutralizing anti-N-cadherin monoclonal antibody (GC-4 mAb), and specific N-cadherin knock-down by short interference RNA (siRNA). TGF-beta1 stimulates Jun N-terminal kinase (also known as stress-activated protein kinase) (JNK) activity in myofibroblasts. Pharmacological inhibition of JNK alleviates TGF-beta stimulated invasion, N-cadherin expression and wound healing migration. Neutralization of N-cadherin activity by the GC-4 or by a 10-mer N-cadherin peptide or by siRNA reduces directional migration, filopodia formation, polarization and Golgi-complex reorientation during wound healing. Taken together, our study identifies a new mechanism in which cancer cells contribute to the coordination of invasion of stromal myofibroblasts.