Signaling through serotonin 5-HT1A receptors involves multiple pathways. We have investigated the functional coupling of the human 5-HT1A receptor to different G proteins using an in vitro reconstitution system based on the expression of recombinant receptor (r5-HT1A) and G alpha-subunits (rG alpha) in Escherichia coli. The r5-HT1A receptor was expressed by insertion in a vector allowing its active expression in E. coli inner membranes. Binding of the selective agonist [3H] +/- 8-hydroxy-(2-N-dipropylamine)tetralin ([3H]8-OH-DPAT) to intact bacteria or E. coli membranes was saturable with a KD of approximately 8 nM and an average of 120 sites/bacterium. Binding properties of several serotoninergic ligands to r5-HT1A receptors were comparable with those measured in mammalian cells. Incubation of rG alpha.beta gamma with E. coli membranes resulted in high affinity agonist [3H]8-OH-DPAT binding (KD = 0.7 nM) and titration with a panel of rG alpha subtypes showed the order of potency: rGi alpha-3 greater than rGi alpha-2 greater than rGi alpha-1 much greater than rGo alpha, while rGs alpha appeared incapable of interacting with 5-HT1A receptors. Moreover, agonist-mediated enhancement of [35S]guanosine 5'-O-(3-thiotriphosphate) binding to rGi alpha confirmed the achievement of the functional interaction between receptor and G proteins. Our findings are in agreement with the in vivo ability of 5-HT1A receptors to activate Gi alpha related to adenylyl cyclase inhibition or K+ channel activation, but do not support previously reported adenylyl cyclase stimulation through interaction with Gs alpha.