Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism

Farmaco. 2004 Sep;59(9):747-58. doi: 10.1016/j.farmac.2004.04.003.

Abstract

The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The mix of either nitrofurantoine large crystals or fine crystals with cellulose microcrystalline showed a negative interaction in all proportions, whatever particle sizes. The lubricant addition induced a positive interaction with Vivapur of greater particle size distribution (200, 102 and 101) favouring higher particle adhesivity, while it maintained unaltered that of Vivapurs of lower particle size (105 and 99). Definitely, when cohesive forces are predominant (Vivapur 105 and 99), the establishment of adhesive bonds between nitrofurantoine and Vivapur remain unnoticed; on the contrary, when cohesion bonds between microcrystalline cellulose particles are weakened by the presence of magnesium stearate, the existence of adhesion bonds between particles of different nature is in evidence, leading to a positive interaction.

MeSH terms

  • Compressive Strength
  • Lubrication
  • Particle Size
  • Pharmaceutical Preparations / chemistry*
  • Porosity
  • Tablets

Substances

  • Pharmaceutical Preparations
  • Tablets