[Effects of different treatments on oocytes activation and parthenogenesis in mouse]

Shi Yan Sheng Wu Xue Bao. 2002 Sep;35(3):236-8.
[Article in Chinese]

Abstract

In order to study effects of electro-fusion and strontium chloride (SrCl2) activation in nuclear transfer experiment on activation and development of mouse oocytes, concentration and treatment duration of SrCl2, electro-pulse and electro-pulse combining SrCl2 were used to activate mouse oocytes which were obtained after hCG 17h. Activated oocytes were cultured in vitro in CZB medium. The results were as follows: 82.4% activation percentage was obtained when the oocytes were treated with 10mmol/L SrCl2 for 6h, it was significantly (P>0.05) higher than those obtained from that treated with the 5mmol/L or 10mmol/L SrCl2 for 4h. The activation percentage was not significantly different between 5mmol/L and 10mmol/L SrCl2 for 6h, but the percentage of morula and blastocyst in 10mmol/L SrCl2 6h group was significantly (P > 0.05) higher than those in 5mmol/L SrCl2 6h group. In the groups of treatment with electro-pulse, the best activation percentage (70.9%) was obtained when the oocytes were treated with 1.0kv/cm, 320micros, 3 pulses, but M + B percentage (7.9%) was low. In the groups of treatment with electro-pulse combining with SrCl2, the best result was acquired (activation and M + B percentage were 75.0% and 57.3% separately) when the oocytes were treated in 10mmol/L SrCl2 for 6h interval 1h after treated with 1.8kv/cm, 10s, 1pulse. These results show that the treatment with electro-pulse combining SrCl2 is a better way to mouse parthenogenesis.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Mice
  • Nuclear Transfer Techniques*
  • Oocytes / cytology*
  • Oocytes / drug effects*
  • Parthenogenesis / drug effects*
  • Strontium / pharmacology*

Substances

  • strontium chloride
  • Strontium