Evidence for multiple glucuronide transporters in rat liver microsomes

Biochem Pharmacol. 2004 Oct 1;68(7):1353-62. doi: 10.1016/j.bcp.2004.05.055.

Abstract

The transport of glucuronides across the endoplasmic reticulum membrane is an important step in the overall process of biotransformation, although the mechanism remains unclear and the participating transporters are unidentified. Using a rapid filtration assay in combination with liquid chromatography-mass spectrometry, we measured the transport of a variety of beta-D-glucuronides in rat liver microsomes and investigated the substrate specificity of the participating transporter(s) by inhibition studies. Time-dependent and bi-directional transport of phenolphthalein glucuronide was detected and the kinetic parameters for transport were determined. The K(m) and V(max) values of high affinity transport were 26microM and 3.9nmol/min/mg protein, respectively. Phenolphthalein glucuronide transport was inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and N-ethylmaleimide. Transport inhibition studies revealed competition between three glucuronides: phenolphthalein glucuronide, estradiol 17-glucuronide and naphthol AS-BI glucuronide indicating that they share a common transporter in the endoplasmic reticulum membrane. Their transport was inhibited by phenolphthalein, but was not affected by p-nitrophenyl glucuronide, naphthyl glucuronide or d-glucuronate. Morphine 3-glucuronide transport was not inhibited by any of the latter four compounds or by phenolphthalein glucuronide. This novel experimental approach has produced data consistent with the presence of multiple (at least three) transporters catalyzing the transport of glucuronides through the endoplasmic reticulum membrane. These data also indicate that the size and/or shape of the aglycone rather than the glucuronic acid moiety per se is an important determinant of transporter specificity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Transport / drug effects
  • Drug Interactions
  • Glucuronates / pharmacology
  • Glucuronides / metabolism*
  • Glucuronides / pharmacology
  • Kinetics
  • Male
  • Membrane Transport Proteins / metabolism*
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / metabolism*
  • Phenolphthaleins / metabolism*
  • Phenolphthaleins / pharmacology
  • Rats
  • Rats, Wistar

Substances

  • Glucuronates
  • Glucuronides
  • Membrane Transport Proteins
  • Phenolphthaleins
  • phenolphthalein glucuronide