The influence of the N-terminal residues 203-214 and the linker domain on motions in the human topoisomerase I-DNA complex has been investigated by comparing the molecular dynamics simulations of the system with (topo70) or without (topo58/6.3) these regions. Topo58/6.3 is found to fluctuate more than topo70, indicating that the presence of the N-terminal residues and the linker domain dampen the core and C-terminal fluctuations. The simulations also show that residues 203-207 and the linker domain participate in a network of correlated movements with key regions of the enzyme, involved in the human topoisomerase I catalytic cycle, providing a structural-dynamical explanation for the better DNA relaxation activity of topo70 when compared to topo58/6.3. The data have been examined in relation to a wealth of biochemical, site-directed mutagenesis and crystallographic data on human topoisomerase I. The simulations finally show the occurrence of a network of direct and water mediated hydrogen bonds in the proximity of the active site, and the presence of a water molecule in the appropriate position to accept a proton from the catalytic Tyr-723 residue, suggesting that water molecules have an important role in the stabilization and function of this enzyme.