Adenovirus early region 1A (E1A) products are phosphorylated nuclear oncoproteins which appear to derive transforming activity largely through interactions with cellular proteins including the tumor suppressor p105/Rb-1 and cyclin A (p60cycA), a regulatory subunit associated with p34cdc2 and the related protein kinase p33cdk2. We have identified several sites of phosphorylation on E1A proteins previously and showed that phosphorylation at Ser-89 alters electrophoretic mobility significantly and affects E1A-mediated transforming activity to some extent. We now report that both Ser-89 and Ser-219, the major E1A phosphorylation site, were phosphorylated in vitro by p34cdc2 purified from HeLa cells. We also found that E1A proteins seemed to be phosphorylated at the highest levels in vivo in mitotic cells which express maximal levels of p34cdc2 kinase activity. Thus, in addition to forming complexes with p60cycA, a regulator of p34cdc2 and related kinases, and p105/Rb-1 which exhibits cell cycle-dependent phosphorylation, E1A proteins seem to be substrates for p34cdc2. These data suggested that a link could exist between phosphorylation, cell cycle progression, and the regulation of transforming activity of E1A proteins.