Microchip capillary electrophoresis with a boron-doped diamond electrochemical detector for analysis of aromatic amines

Electrophoresis. 2004 Sep;25(17):3017-23. doi: 10.1002/elps.200305965.

Abstract

The attractive features of a boron-doped diamond (BDD) thin-film detector for microchip capillary electrophoretic (CE) separations of dye-related amino-substituted aromatic compounds are described. The diamond electrode was employed in the end-column amperometric detection of 4-aminophenol (4-AP), 1,2-phenylenediamine (1,2-PDA), 2-aminonaphthalene (2-AN), 2-chloroaniline (2-CA), and o-aminobenzoic acid (o-ABA), and its attractive behavior was compared to commonly used screen-printed carbon and glassy-carbon electrodes. These conventional electrode materials exhibit a significant degree of passivation and low sensitivity to the above-mentioned environmental pollutants. The diamond-based electrochemical detection system displayed a favorable analytical performance, including lower noise levels, higher peak resolution with enhanced sensitivity, and improved resistance against electrode passivation. Factors influencing the on-chip analysis were assessed and optimized. The diamond detector displayed detection limits of 2.0 and 1.3 microM for 4-AP and 2-AN, respectively, and a wide linear response for these compounds over the 2-50 microM range. The enhanced stability was demonstrated by relative standard deviation (RSD) values of 1.4% and 4.7% for 100 microM 1,2-PDA and 200 microM 2-CA, respectively, for repetitive detections (n = 7). Besides, the simultaneously observed current decrease was 2.4 and 9.1% for 1,2-PDA and 2-CA, respectively (compared to 21.8 and 41.0% at the screen-printed carbon electrode and 28.3 and 34.1% at the glassy carbon electrode, respectively). The favorable properties of the diamond electrode indicate great promise for environmental applications in CE and other microchip devices.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amines / chemistry
  • Amines / isolation & purification*
  • Boron
  • Diamond
  • Electrochemistry / methods
  • Electrophoresis, Microchip / instrumentation
  • Electrophoresis, Microchip / methods*
  • Hydrocarbons, Aromatic / chemistry
  • Hydrocarbons, Aromatic / isolation & purification*
  • Sensitivity and Specificity

Substances

  • Amines
  • Hydrocarbons, Aromatic
  • Diamond
  • Boron